
Blinker Frequency

STM32F466RE

July 1, 2024

*CPU pipelining allows instructions to be processed in parallel, making it difficult to confidently deter-
mine how many loop iterations occur per clock cycle, even for simple programs; Intel describes this as
”a form of parallelization where multiple iterations of a loop execute concurrently” [1]. Disentangling
the effects of pipelining from these computations is impossible at this level of depth.

Default and Delayed Frequencies

If a firmware’s only instruction is to blink an onboard LED, blinks will occur at around∗

the core frequency (f) of 84MHz. We want to slow the blinking such that it’s naturally
visible, so we’ll need to to add a number of cycle delays (Nd) to our application to
target an easily-observable frequency (f ′).

f =
N

T
= 84000000

cycles

second

f ′ ∝ N ′ =
N

Nd

*f ′ is controllable, as opposed to f which is determined by the chip’s architecture.

Initial implementation of cycle delays could be achieved by a for loop that executes
only one ’no-operation’ instruction. At first glance, one iteration of this loop requires
one cycle, so iterating (i = 0; i < N ; i++) predicts a requirement of Nd = Nloop

iterations, where Nloop = N = 84 million cycles; this corresponds to our desired
f ′ = 1 Hz. Consider the following code excerpt:

for (uint32_t i = 0; i < N; i++) {

__asm__("nop");

}

gpio_toggle(led_port,led_pin);

1



2

Flashing this firmware and observing the LED, it’s clear that the order of magnitude
is approximately correct, yet f ′ is 4 times smaller than expected. Why is this true if
the application runs at 84MHz and each for loop iteration executes only one nop
assembly instruction?

• The application runs atN cycles per second, but each iteration of the for loop
costs more than 1 CPU cycle.

• Nd was over-estimated; the application is processing is slower than expected.

• N iterations of this for loop (Nloop) costs cN cycles (c > 1).

• Nloops < N must be satisfied to achieve f ′ ≤ 1.

Error is generated solely from the following assumption:

Nloop =
N∑
i=0

1 = N = 84000000 cycles

Empirically, it is clear that the above equality is incorrect and the following is true:

Nloop =
N∑
i=0

ci > N

Since Nloop is chosen by us, and N is known, we can accurately determine the nunber
of CPU cycles consumed by each iteration.

Re-arrange eq. 2 to obtain the number of cycles per for loop iteration, denoted ci:

Nloop = ci

N∑
i=0

1 =
N

f ′ ∗ 1 second

ci =
1∑N
i=0 1

N

f ′ ∗ 1 second

ci =
1

N

N

f ′ ∗ 1 second

ci =
1

f ′ ∗ 1 second

This coefficient represents the number of cycles required to complete one iteration of
the for loop, and we may calculate it using the frequency recorded above:

ci =
1

0.2540 cycles
second

1

1 second
≊ 4 cycles

Unsurprisingly, the observed frequency (f ′) is inversely proportional to the number of
cycles required for one iteration. Our firmware over-estimated this requirement,
resulting in the LED blinking too slowly. Reduce the number of iterations and the
blinker rate will increase; reducing them by a factor of ci should yield our target of
f ′ = 1. That is, f ′ = 1 when Nloop =

1
ci
N

Update the firmware to reduce Nloop by a factor of ci. If the proposed relationship
between f ′ and ci is correct, f

′ will approach 1 Hz.



3

uiint32_t Nloop = 84000000 / 4;

for (uint32_t i = 0; i < Nloop; i++) {

__asm__("nop");

}

gpio_toggle(led_port,led_pin);

Re-assuring – a blink frequency of f ′ = 0.934 Hz ≊ 1 Hz (6.6 percent error).

Firmware Source Code:

// Blinker Firmware 2024.06.18

#include <libopencm3/stm32/f4/rcc.h>

#include <libopencm3/stm32/f4/gpio.h>

#define LED_PORT (GPIOA)

#define LED_PIN (GPIO5)

static void rcc_setup(void) {

rcc_clock_setup_pll(&rcc_hsi_configs[RCC_CLOCK_3V3_84MHZ]);

}

static void gpio_setup(void) {

rcc_periph_clock_enable(RCC_GPIOA);

gpio_mode_setup(LED_PORT,GPIO_MODE_OUTPUT,GPIO_PUPD_NONE,LED_PIN);

}

static void maintain_frequency_standard(uint32_t cycles) {

for (uint32_t i = 0; i < cycles; i++) {

__asm__("nop");

}

}

int main(void) {

rcc_setup();

gpio_setup();

while (1) {

// Toggle the LED state at freq (f’)

gpio_toggle(LED_PORT,LED_PIN);

maintain_frequency_standard(84000000/4);

}

return 0;

}



4

Error Analysis of Ci via Disassembly

Disassembling main should reveal around 4 assembly instructions followed by a condi-
tional branching instruction, in order to agree with Ci; this coefficient is supposed to
represent the total number of cycles required to execute the firmware’s for loop.

If main is disassembled and the number of instructions per loop is far greater than 4,
a combination of factors are likely relevant:

• CPU pipelining – iterations of the program’s loops are processing in parallel,
reducing the cycles required to delay gpio toggle to target f ′ = 1 Hz.

• The cycles required to execute ARM Assembly instructions varies with the
type of instruction (Ncycle ̸= Ninstruction).

Here are the disassembled contents of main from firmware.o:

@ Firmware v1 -- Blinker with 1s frequency using delayed cycles.

Dump of assembler code for function main:

0x00000000 <+0>: push {r3, lr}

0x00000002 <+2>: ldr r0, [pc, #44] @ (0x30 <main+48>)

0x00000004 <+4>: ldr r4, [pc, #44] @ (0x34 <main+52>)

0x00000006 <+6>: bl 0x6 <main+6>

0x0000000a <+10>: mov.w r0, #1536 @ 0x600

0x0000000e <+14>: bl 0xe <main+14>

0x00000012 <+18>: ldr r0, [pc, #32] @ (0x34 <main+52>)

0x00000014 <+20>: movs r3, #32

0x00000016 <+22>: movs r2, #0

0x00000018 <+24>: movs r1, #1

0x0000001a <+26>: bl 0x1a <main+26>

0x0000001e <+30>: movs r1, #32

0x00000020 <+32>: mov r0, r4

0x00000022 <+34>: bl 0x22 <main+34>

0x00000026 <+38>: ldr r3, [pc, #16] @ (0x38 <main+56>)

0x00000028 <+40>: nop

0x0000002a <+42>: subs r3, #1

0x0000002c <+44>: bne.n 0x28 <main+40>

0x0000002e <+46>: b.n 0x1e <main+30>

0x00000030 <+48>: movs r0, r0

0x00000032 <+50>: movs r0, r0

0x00000034 <+52>: movs r0, r0

0x00000036 <+54>: ands r2, r0

0x00000038 <+56>: adds r7, #160 @ 0xa0

0x0000003a <+58>: lsls r0, r4, #2

End of assembler dump.


